Assisted deep learning framework for multi-class skin lesion classification considering a binary classification support
نویسندگان
چکیده
منابع مشابه
Deep Learning for Skin Lesion Classification
Melanoma, a malignant form of skin cancer is very threatening to life. Diagnosis of melanoma at an earlier stage is highly needed as it has a very high cure rate. Benign and malignant forms of skin cancer can be detected by analyzing the lesions present on the surface of the skin using dermoscopic images. In this work, an automated skin lesion detection system has been developed which learns th...
متن کاملA Novel Multi-task Deep Learning Model for Skin Lesion Segmentation and Classification
In this study, a multi-task deep neural network is proposed for skin lesion analysis. The proposed multi-task learning model solves different tasks (e.g., lesion segmentation and two independent binary lesion classifications) at the same time by exploiting commonalities and differences across tasks. This results in improved learning efficiency and potential prediction accuracy for the task-spec...
متن کاملSkin Lesion Classification Using Deep Multi-scale Convolutional Neural Networks
Melanoma is a malignant tumour originating from melanocytes cells skin cells responsible for the production of melanin. The American Cancer Society estimates that in the United States alone for 2017, more than 87,000 new melanoma cases will be diagnosed and around 9,300 persons are expected to die[1]. Skin melanoma lesions are very challenging to visually diagnose due to their similarity in vis...
متن کاملWebly Supervised Learning for Skin Lesion Classification
Within medical imaging, manual curation of sufficient welllabeled samples is cost, time and scale-prohibitive. To improve the representativeness of the training dataset, for the first time, we present an approach to utilize large amounts of freely available web data through web-crawling. To handle noise and weak nature of web annotations, we propose a two-step transfer learning based training p...
متن کاملSkin Lesion Classification using Class Activation Map
We proposed a two stage framework with only one network to analyze skin lesion images, we firstly trained a convolutional network to classify these images, and cropped the import regions which the network has the maximum activation value. In the second stage, we retrained this CNN with the image regions extracted from stage one and output the final probabilities. The two stage framework achieve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biomedical Signal Processing and Control
سال: 2020
ISSN: 1746-8094
DOI: 10.1016/j.bspc.2020.102041